Influences of Strain Rate and Temperature Variation on Material Intrinsic Length of Plasticity Strain Gradient Theory
نویسندگان
چکیده
منابع مشابه
Static analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory
In this research, the bending analysis of rectangular nanoplates subjected to mechanical loading is investigated. For this purpose, the strain gradient elasticity theory with one gradient parameter is presented to study the nanoplates. From the best knowledge of authors, it is the first time that the exponential shear deformation formulation based on strain gradient elasticity theory is carried...
متن کاملInternal strain on the bond length and rate of hydrolysis in cyclic amides
The internal strain in cyclic amides are explained as a factor of resonance that are effected on the bond length C-N and are a major factor of rates of hydrolysis. The cyclic amides in this study are optimized by Gaussian program and the bond length of C-N in the rings are studied by HF/6-31G*.
متن کاملGlobal Existence for Rate-Independent Gradient Plasticity at Finite Strain
We provide a global existence result for the time-continuous elastoplasticity problem using the energetic formulation. For this we show that the geometric nonlinearities via the multiplicative decomposition of the strain can be controlled via polyconvexity and a priori stress bounds in terms of the energy density. While temporal oscillations are controlled via the energy dissipation the spatial...
متن کاملDynamic Stability of Single Walled Carbon Nanotube Based on Nonlocal Strain Gradient Theory
This paper deals with dynamic Stability of single walled carbon nanotube. Strain gradient theory and Euler-Bernouli beam theory are implemented to investigate the dynamic stability of SWCNT embedded in an elastic medium. The equations of motion were derived by Hamilton principle and non-local elasticity approach. The nonlocal parameter accounts for the small-size effects when dealing with nano-...
متن کاملFree Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory
In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Key Engineering Materials
سال: 2000
ISSN: 1662-9795
DOI: 10.4028/www.scientific.net/kem.177-180.47